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SUMMARY

Formulas are presented for the determination of the creep deflection-
time characteristics of an initially curved idealized H-section column.
These results were obtained from closed-form solutions of the differen-
tial equation of bending (derived in NACA TN 3137} of a beam columm whose
creep properties .are of a nonlinesrly viscoelastic nature. The critical
time (the time required for infinite deflections to develop) established
by these soclutions is tabulated and plotted for a wide range of the
parsmeters involved.

INTRODUCTION

The effect of creep on the behavior of initially curved columns was
previously investigated in reference 1, and the resulting deflection-
time characteristics were obtained for several values of the parameters
involved. It was found that every column whose material is subjJect to
nonlinear creep — and this includes all columms made of structural metals
such as aluminum, steel, titanium, and so forth, when subjected tc high
temperatures — buckles if the axially compressive load acts upon 1t for a
sufficiently long time. This statement is true even though the compres-
sive force is less than the static critical load which is defined as that
load which would cause buckling instantaneously. Depending upon the ratio
of the applied load to the static critical load, the initisl deviation
from streightness, and the creep properties of the metal, the time
required for the development of infinite deflections — the so-called
critical time — may be anywhere between a few seconds end & few years.
It is of great importance to the structural designer of supersonic air-
craft to know how much the critical time of his structure is.

In the present report the differentisl equations derived in refer-
ence 1 for the analysis of the behavior of idealized H-section columms
are solved in closed form for integral values of the exponent in the power
function defining the assumed creep law. These solutions are used for the
determination of the deflection as a function of time of an initially
curved column whose end load is less than the static critical load of the
column. The critical time is calculated for a wide range of the exponent
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as a function of g parameter which includes the effect of end load and
initial curvature. The results of the calculations are presented in
tables and charts which enable the designer to determine the critical
time once the parameters appearing in the basic uniaxiel tensile or com-
pressive creep law are determined experimentally at design temperature.

The authors are indebted to Professor N. J. Hoff for his guidance
and criticism, to Professor F. V. Pohle for his assistance on the mathe-
metics contained herein, to Mr. R. Ortasse for his assistance with the
calculations, and to the National Advisory Committee for Aeronautics for
sponsorship of the. research reported in thils paper.

SYMBOLS
A area of idealized H-section
A,B,,Ch constants
Ey effective elastic modulus
fe amplitude of time-dependent deflection (accrued for

t >0) divided by h

i amplitude of initial deviation from stralghtness of
unloaded column divided by h . —

fTo amplitude at t = O of total deviation from x-asxis of
loaded column divided by h (x-axis is drawn between

end points of column), fi/[l - ('E/UE)_]

h distance between flanges of ideallzed H-section
I moment of inertis of idealized H-section, Ah2/k
I;,I2,d1,Jd2 integrals
L column length : . .
m exponent in viscosity term
n integer
r integer
(m-1)/2
S = (-1)® cos®2(nx/m)

n=1
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t - time

top critical time

X axial coordinate

z emplitude for £ 2 0 of total deviation from x-axis

divided by h, f, + fTo

€ strain

N strain at t = 0, 0p/Eq

A viscosity coefficient

a stress

T average axlal compressive stress

o static buckling stress, nreElI/ALa

Oo constant stress

T time parameter, %31( 2&')m/ ED\.(UE - E)]} +
Top critical value of time parameter (T — Top as 2z — ®)
T time parameter corresponding to z = 1/2
01500 functions of x

() =3 )/

( )y =3()/x

CREEP LAW

In the analysis of reference 1 the fundamental uniaxial tensile or
compressive constant-stress creep curve is approximated by a straight
line, the slope of which can be considered as the secondary creep rate of
a real materisl (fig. 1). This idealization accounts for the actual second-
ary stage of creep (assumed to be of a viscous nature), approximates the
initial elastic or elastoplastic stage and the primary creep stage, and
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ignores any final stage. The relation between the strain rate and the
stress corresponding to the simplified creep curve 1s

&= (5/8) + (B (1)

in which ¢ eand o0, respectively, are the strain and stress, E; is the

effective modulus (fig. 1), m and A are parameters defining the vis-
cous behavior of the materlal, and the dot over a symbol indicates dif-
ferentiation with respect to time +. The three material parameters Ej,

m, and A are considered as constants for a glven temperature and can be
determined experimentally from conventional tensile or compresslve creep
tests. The corresponding relationship smong stress, strain, and time for
such tests can be found from equation (1) if the strain €o at t =0

is taken as 0g/E7 (fig. 1). Thus

¢/e, = (El/x)com-l + 1 : (2)

DEFLECTIONRS OF A COLUMN WITH INITIAL CURVATURE

Differential equations were derived in reference 1 defining the
deflection-time characteristics of a simply supported idealized H-sectlon
column (figs. 2 and 3) whose material parsmeters are the same for tension
end compression. The column is assumed to be loaded instantaneously at
t =0 with an axial load which remains constant for + > 0. The differ-
ential equations derived were simplified with the aid of the assumption
thet the sinusoidal shape of the centroidal axis of the unloaded column
was malntained in the loaded columm and only the amplitude varied. The
differential equations so obtained were readily solved in integral form.
Solutions to these equations are presented in table 1 in which the equa-
tions referred to are from reference 1.

In appendix A the integrals appearing in table 1 are evaluated in
closed form for any even or odd integral value of m. Hence the following
relations govern the deflection-time characteristics of the column ana-
lyzed for G < op. For m an 0dd integer (m > 1) with 0 < fTo <o

and fTo €z g o, —
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(m-1)/2
T = (&E) log _Z_) + - (-1)" cosm'e(%‘) log
= N \m)T = [

- (m/2)- o bz2 2(nx
(o]

with O<fTO§l/2 and 1/2 £z € «,

() B o gt ] - o
(7}

)
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-1
ree =11+ (22xfi?) 3= (0D P(an) 51 (an/on)  (8)
n=1,3,... ) _ !

with 1/2 € fp < and fy, Sz S,

T = (?n%l)n-zmz '(_l)(m-n-l)/e sinm-e(gﬁ) {tan'l[ez tan (12#:1)] -

1,3,...

ten™ 2y tan (gﬁ)]} (9)

e (D) B (e I R C (%Tf)]}

n=1,3,...
(10)

If m= 1, the corresponding column is constructed of a linearly
viscous material (Maxwell material) end from réference 1 its exact
deflection-time behavior is governed by the reletions (see also refs. 2,
3, and 4)

Z = fTerT ’ (ll)

and

Tcr = . (lla)

Equations (3) to {1lla) define completely the deflection-time charac-
teristice of columms whose properties have been previously defined. It
may be noted that for all values of m greaster than unity there exists a
finite critical time which is defined as that time at which the column
deflections increase without limit.
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DISCUSSION

The results presented in equations (3) to (1la) can be used to deter-
mine the deflection as a function of time of columns whose properties are
approximated by those described earlier. With the aid of these equations
curves of deflection versus time for various values of the zero-time
deflection parameter fTo can be computed. Such curves are presented

in reference 1 for a wide rasnge of values of fTo and for m=1, 2, 3, 4,

and 5.

Since the critical time parameter T.,. is a measure of the life

span of a column, this quantity is perhaps the most significant parameter
of the present analysis. Hence in tasble 2 and figures % and 5 Ter 1s

given as a function of fTo for a wide range of the exponent m. The

results for integral values of m were obtained with the aid of equa-
tions (%), (8), and (10). However, for large values of m it is more
convenient to determine T., from numerical integration of the pertinent

relations given in table 1, than it is to apply the corresponding closed-
form solutions. It may be noted that results for m = 1.5 and m = 1.1
are also included in table 2 and figure 4. These latter results were
obtained by performing the integrations indicated in table 1(a) in closed
form for m = 1.5 and numerically for m = 1.1. In order to obtain the
actual critical time t.,, of a given column with known values of the

applied stress © and amplitude of initial deviation from straight-
ness f3, results of unlaxial tensile or compressive creep tests corre-

sponding to the design temperature must be available. From such infor-
mation the parameters E;, m, and A can be determined. If these

parameters differ significantly for tension and compression tests, it is
suggested that they be chosen to correspond to the compression tests,
since for all total-deflection amplitudes zh < h/2 both flanges of the
H-section column are in compression. In view of the simplifying sssump-
tions regarding the creep law, shape.of cross section, and affineness of
the shapes of the unloaded and loaded column, the present results can be
considered only as a first approximation in the analysis of actual columns.

Polytechnic Institute of Brooklyn,
Brooklyn, N. Y., Dec. 2, 1952.
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APPENDIX A

EVALUATION OF INTEGRALS APPEARING IN
DEFLECTION-TIME RELATIONSHIPS FOR
INTEGRAL VALUES OF EXPONENT m
The integrals required for the evaluation of the various deflection-

time relationships arising from the analysis of the creep deflections of
an sxially loaded initially curved bar are from table 1 .

I

ﬁ/ [2/2) + 4% - [(1/2) - z]m} (A1)

H
]

. ----ﬁz/{[z + (/2" + [z - (1/2)]“’} (42)

For integral values of m, it is seen from table 1 that I; requires
evaluetion for both odd and even values of m, whereas I, need be
determined only for even valués of m.

TIn the ensuing calculetions, the integrals I; and I, are replaced
by .-

Jy

fdx/q’l(x) A (83)

and

fdx/¢2(x) S (ab)

in which 0(x) = [(1+ %)™ - (1 - 08, &(x) = [(x + D™+ (x - T,
X =2z, Jq-= El'mIl, and Jp = El'mle. Each of the required integrations
will be performed with the method of partial fractionms.

Io
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Determination of I; for 0d4d Values of m

If the denominator of the integral in equation (A3) is equated to
zero, then the following relationship is obtained for the roots x of
the resulting odd mth-order polynomial:

(L+x)/(1-x) =1Y/m (85)

in which the required roots of unity are

1/m _ e(2n1r/m)1

1 , n=0, %1, 2 _ . . fm-1)/2 (A6)

Hence, substitution for ll/m from equation (A6) into equation (A5) and
subsequent solution for x yield

x = 1iten (nx/m), n=0, ¥, 2, ..., ¥Hm-1)/2 (AT)
Thus, the denominator of equation (A3) can be factored as follows:
01(x) = x[xe + tana(iﬂ[xe + tane(%“)] C. E@ + ta.nz[(r’—;)(m - 1)/2]}
(48)

The integrand of J1 cen be resolved into partial fractions to yield

(m-1)/2
1/01(x) = (A/x) + mz/ (Box + Cn)/[x2 + ta.n2(mt/m):] (29)

n=1

in which A, B,, and C, are constants. From equation (A9)
(m-1)/2
& (x) {(a/x) + (an + CD»A:xQ + tang(nn/m)] =1 (A10)
n=1
and hence A 1s determined from the condition that, since ®;(0) =0

lim @(x)(4/x) = 1im A®y'(x) = 1 (A11)
x-0 x=0
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in which the prime Indicates differentiastion with respect to x.
A=1/2m

Similarly, since 4’1[1 ten (nn/m)] = o,

(m-1)/2 :
lim 01(x) nl)/ (an + Cn)/[x2 + 'ta.ne(nn:/m)]
1 .

x-»1 tan (nn/m) n=

11 o' (x) Cn)/2x
x—gi tan {(nr/m) 1 (an ¥ n)/

=1
for each n=1; 2, . . .; (m - 1)/2. Thus
{@ni ten (nm/m) + Cg]/21 ten (nn'/m)} & '[1 ten (nn/m)] = 1
From equation (A7)
ei(nnr/m)i

(Ltx) = cos (nn/m)

and hence
¢l'[i tan (n:r/m)j = om(-1)" _cose'm(mr/m)
Equations (Alk) and (Al6) yield

B, = (1/m)(-1)" cosm—e(nn/m)

and

Cp =0

Hence

(A12)

(A13)

(Alk)

(A15)

(A16)

(a17)
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From equations (A9), (Al2), and (Al7), the integrand of J; becomes

(m-1)/2 -
1/0,(x) = (1/2m)(1/x) + (1/m) mzz: (-1)7 cos™ 2(nn:/m) x/T%E + tane(nnﬁmj}

n=1
(A18)
Hence from equations (Al), (A3), and (A18), after performance of the

indicated integration, the following expression is obtained for the indef-
inite integral I; for odd integral values of m > 1

(m-l)/2(

I, = (Em'2/m) log 2z + -1)" cosm_e(nx/m) log {Lz2 + tane(nn/mﬂ

n=1
(A19)

Evaluated between the limits =z and fTo » Ip becomes

-1)/2
(mgl)/ -1 cosm-e(%) log (A20)
n=1 |:lLfTO + tanz(%)]
Also
Il(co,fTO) = ;.iam Il(z,fTo)
m-2 (m"l)/2 - o) [}
= (g—m—) log (-2—;7;;) - é (-l)Il cos™ (%‘) log EI-fTO + tan (%ﬂ

(a21)

In the determinstion of equation (A21) use was made of the relationship

m- 2 :
( i/ (-1)" cosm_e(nrr/m) = -1/2 (a22)
n=1
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in which m is an odd integer grester than unity. This relation is
derived in appendix B. o

Determination of I for Even Values of m

The present analysis is performed in a manner analogous to that of
the preceding calculstions. Since m 1s now an even lnteger the poly-
nomial ¢1(x) in equation (A3) is of order m - 1. The required

(m - 1) roots of ®4(x) are then

x =1 tan (nn/m), n =0, 1, %2, . . ., *[{w/2) - 1] (A23)

the resulting expression for Iy of the preceding section can be used

in the present calculations provided the upper limit on the summation
sign in equation (Al9) is replaced by (m/gg_:_l. Hence for even integral

values of n

(m/2)-1
I, = (Em'e/h) log 2z + méé: (-l)n cosm'e(nx/m) log [Zkz2 + tane(nn/mﬂ
n=1 -
(A2k)
Also
) 2m-e) 2
(o)« B (1)
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(mg-l(-l)rl cosm—e(an) log [l ’ tan2(%ﬂ (A26)
n=1 El.fToz + tang(%)]

Determination of’ 12 for Even Values of m

If the denominator of equation (A4) is equated to zero, the following
relation is satisfied by the roots x of ¢2(x):

(x+ D/(x - 1) = (-1)Y/® (227)
in which
(-1)1/1“ = e(n“/m)i, n=%1, #3, . . ., H{m - 1) (A28)
Solution of equation (A27) together with equation (A28) yields
x = -1 cot (nn/2m), n=%1, 3, . . ., ¥{m - 1) (229)
Hence
m-1
1/8o(x) = Z (an + Cn)/[x2 + cote(nn:/2m)] (A30)
n=1,3,5,...
Since
xt1l-= —iei(nﬂlem)i/sin (or/2m) (A31)
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and
9, [-1 cot (n/em)] = ems (1) B12 g4 2o o) (a32)
Bn =0
and
c, = (1/m) (-1 B2 (an/om) 816 (e /2m) (A33)

Therefore .from equations (A2), (AL), (A30), and (A33) for even integral
values of m

-1
Ip = (Em'l/ﬁ) S (_l)(m-n-l)/E sinm'z(nﬁ/zm) tan_l[?z tan (nn/2mﬂ
n=31,3,5,...
(A3k)
-1 m-1 e _ -
o) - (B, 55l (e o onf)]
tan™"|2fp  ten (I )]} (435)
-1
Ig(wzﬂp ) = (Em'l/&) S (_l)(m—n—l)/E sinm_z(nn/Em) (n/2) -
© n=1,3,5,...
tan_l[ngo tan (nﬂ/&nﬂ} (A36)

wod)- (5,5, e e e (2] - ()

(4373
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Io(e,1/2) = (2m-2ﬁ/m?)

m-1

>

n=1,3,5

300

(-1

)(m-n-l)/2(

m-n) s inm-e( nr/2m)

(A38)

15
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APPENDIX B

-1)/2
DERIVATION OF THE REIATION (-1)" cosm-e(nn/m) = -1/2
n=1 - . .

FOR ODD INTEGRAL VAIUES OF m

In appendix A Il(oo,fTo) was determined with the aid of the rela-
tionship

(m-1)/2
5= /(-1)n
n=1

-g(nﬂ/m)

-1/2 _ (B1)

in vhich m is any odd integer greater than unity. Equation (Bl) will
now be shown to be valid. From reference 5, page 69,

(m-3)/2
0s®"2(nn/m) = 23 i/ (m;E) cos [(m - 2r - 2)(n1t/m)_-l (B2)

r=0

in which the binomial coefficient (ref. 5, p. 19) is defined as

(m—2) - ( m-2 ) - (m - 2)¢ (B3)

r m-2-r r!{m - 2 - r)!
Equations (Bl) and (B2) yield

(%é%%/E (m-3 /2(_1)n (n:2

g = o3 M r )cos [(m - 2r - 2)(nn’/m)] (BY4)

n=1 r=0

With the order of summatlions interchanged, equation (B4) becomes

( 2 2 =
§ = 23 M mi/ / - )n cos [(m - 2r - 2)(zt/m)n] (B5)

l
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From reference 5, page 82,
(m-1)/2
(-l)n cos [:(m - 2r - 2)(1r/m)g =

n=1

—(1/2){} _ (_1)(111-1)/2 cos [(m - 2r - 2)(':(/2)]/cos [(m - 2r - 2)(zr/2m):]}
(B6)

Since m is odd, m - 2r - 2 1is also odd, and therefore equation (B6)
reduces to

(m-1)/2
>

n=1

(-1)" cos l_-(m - 2r - 2)(rr/m)n] = -1/2 (B7)
Equation (B7) together with equation (B5) yields
(m-3)/2
s = _22—111 Z (m;2> (B8)
r=0
From reference 5, page 19,

m-2

g <m;2> _ o2 (B9)

The number of terms under the summation sign in equation (B9) is m - 1
which, since m 1is odd, is an even number. From equations (B3) it can
be seen that the binomial coefficients are symmetric. Hence the sum of
the first (m - 1)/2 terms under the summation sign of equation (B9) is

(1/2)(2m-2) - 28-3, Ip order to obtain this sum from equetion (BY), let
r=0,1, . . ., (m - 3)/2. The number of terms considered is then

(1/2)(m - 3) + 1 = (m - 1)/2. Consequently
(m'3)/2 m_2 m_3
ZE% ( - ) =2 (B10)

and, therefore, equation (B8) yields
s = -1/2

which was to be proved.
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TABIE 1.- INTEGRALS REQUIRED FOR DETERMINATION OF r AS A FUNCTION OF =z
[Reproduced from ref, 1]
{2} m even integer [or fracticnal)
fTO . T T Ter
a b
z ‘1f2
1 ds d
fp, S8 SE jf - - jf S . z n _
o<f, <1 TO(-+’) .'(2“2) TD( +z) ‘(2"2)
o =3
c d
1 w0
1 dz d
5Eese T1+>/;/2/z+_-_._\m+/z 1a Tl"f.;el j_\mz/ Y
(*%2) "% -2 felEgrg) v F-3
e T
J—*SrT <® fp £28w : dz * az
2 a a \/;TO(Z+%)m+(z—;)m ﬁl'o(z+-%)m+(z--l)m
{(t) m odd integer
Iy _ - -
0 z ' ‘er
e f
- z ax - a
o<fTo< rTOSzS,w £ e X ff 1 z 1\
To(z-i-E) +(z- )Il '_[ID(Z+ )-I-(E-E)
%8q. (29).
PEq. (32).
Eq. {30).
drq. (31).
®Eq. {33).

Teq. (38),

- NI VOVN

QeTE

6T




TABIE 2.- VALUES OF Tor FOR l.1€m$ 1k AND 0.01 € fp ¥ 1.00

1.1 1.5 2 3 L 5 6 7
7.165 3.178 2.7h1 2.974 3.891 5.612 8.502 13.73
6.918 2.852 2.395 2.512 3,198 L4.505 6.759 10.58
6,471 2.h20 1.937 1.902 2.286 3.053 | k.352 6.483
6.306 2.261 1. 769 1.679 1.955 2,529 3.ho2 5.048
6.13k% 2.093 1,590 1. 44k 1.608 1.985 2.608 3.624
5.795 1.765 1.24h . 994 .969 1,042 t.191 1.417
5.597 1.571 1,041 LTh5 .643 .609 .610 .635
5,456 1.433 897 579 Jho 379 .359 .313
5.34k4 1.323 . 785 RITey: .325 248 .200 167
5.252 1.231 .695 .375 2ko .169 .125 L0940
5.175 1.153 619 .310 .185 .119 .0800 L0557
5.108 1.087 .559 .259 L1k .0858 .0534 L0344
5.049 1.031 307 -219 115 .0633 .0371 0220
4,997 .982 RSN .187 .0911 LOUTT .0259 L0145

8 9 10 11 12 13 14

0.0L | 22.56 37.96 6k.91 112.6 197.4 349.4 623.6
.02 17.05 28,18 47.35 80.71 139.2 242.3 425.3
.05 9.943 15.68 25.11 Lo.80 67.03 111.2 185.8
.07 7.499 11.47 17.79 27.97 48 71.36 115.2
.10 5,131 8.018 11.07 16.59 25,11 38.33 58.95
.20 1.716 2,169 2.754 3.560 4,598 6.021 7.94%0
.30 667 . Th5 .828 .932 1.058 1.213 1.400
L0 292 .201 287 .288 .290 .295 .304
.50 .143 .125 .111 .100 .0909 | 0833 L0769
.60 .0733 .0583 .0469 .0386 .0319 0265 .0223
.T0 .0398 .0291 .0215 .0161 .0122 L0094 L0072
.80 L0227 .0153 .0105 .0073 .0051 .0036 .0025
.90 0134 .0085 0053 .0035 .0023 .0015 . 00097
1.00 .0083 .00kg .0029 .0017 .0011 .00065 .000LOK

oS
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Figure 1.- Idealized creep curve.
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Figure 4.~ Critical time parameter for 1.1 SmS 7 eand 0.01 S £, < 1.0.
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